

Synthesis and X-ray crystal structure of a barium complex with 2-methoxy-2,6,6-trimethylheptane-3,5-dionate

Sergei Ivanov, ** Natalia Snezko, *Andrei Ilyukhin b and Vladimir Sergienko b

^a Department of Chemistry, Moscow State University, Vorob'evy Gory, Moscow 119899, Russia

^b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 117907, Russia

(Received 6 June 1996; accepted 29 August 1996)

Abstract—The preparation and crystallographic characterization of a barium complex with 2-methoxy-2,6,6-trimethylheptane-3,5-dionate (L) are described. The structure consists of dimeric complexes of Ba₂L₄(H₂O)_{1,81}. The coordination numbers of both barium atoms are nine owing to eight oxygen atoms from the four ligands L and a water molecule. © 1997 Elsevier Science Ltd

Keywords: β -diketonate metal complexes; 2-methoxy-2,6,6-trimethylheptane-3,5-dione; barium complexes; X-ray structure.

Barium dipivaloylmethanate, $Ba_4(thd)_8$ (Hthd = 2,2,6,6-tetramethylheptane-3,5-dione), and its hydrates are often used as precursors for the preparation of $YBa_2Cu_3O_{7-x}$ superconducting films. More volatile barium compounds are of current interest.

In this respect, a new barium complex with 2-methoxy-2,6,6-trimethylheptane-3,5-dionate (L) was synthesized and investigated. The HL molecule differs from Hthd in having a substituent in the 2 position.

HL

Compound $[Ba_2L_4(H_2O)_{1.81}]$ (1) was prepared by dissolving barium metal in a slight excess of a boiling heptane solution of HL. Colourless transparent crystals of 1 were obtained by slow evaporation of the solvent. A single crystal of 1 sealed in a glass capillary.

The crystal data for 1 $[Ba_2(C_{44}H_{76}O_{12})(H_2O)_{1.81}]$ are: M = 1104, triclinic system, space group $P\overline{1}$, a = 10.245(4), b = 11.630(4), c = 22.953(7)Å; $\alpha = 98.08(2), \quad \beta = 95.48(2), \quad \gamma = 94.68(2)^{\circ}; \quad V =$ 2683(1) Å³; Z = 2, $D_c = 1.367$ g cm⁻³. Intensities of 7861 independent reflections were measured $(2\Theta_{\text{max}} = 52^{\circ})$ on an Enraf-Nonius CAD-4 diffractometer (monochromated $Mo-K_{\alpha}$ $\lambda = 0.7107 \text{ Å}, \mu = 15.1 \text{ cm}^{-1}, T = 293 \text{ K}$). The structure was solved by direct methods (SHELXS86 [1]) and refined by the least-squares technique in a fullmatrix anisotropic approximation for all non-hydrogen atoms (without disordered methyl carbons of all Bu' groups and water molecules) to R(F) = 0.071 and $wR(F^2) = 0.176$ (refinement of F^2 using SHELXL93 [2]).

The structure of 1 consists of dimeric complexes of $Ba_2L_4(H_2O)_{1.81}$ (Fig. 1). Both barium atoms [Ba(1) and Ba(2)] are bound to four L⁻ ligands which act as tridentate bridging ligands towards each barium atom. Each of the ligands coordinates one Ba atom by two β -diketonate oxygen atoms [O(2), O(3), O(5) and O(6) to Ba(1); O(8), O(9); O(11), and O(12) to

^{*} Author to whom correspondence should be addressed.

Fig. 1. Molecular structure and atom-numbering scheme for the molecule of $[Ba_2L_4(H_2O)_{1.81}]. \label{eq:fig.1}$

Table 1. Selected bond lengths (Å) and bond angles (°) for complex 1

Table 1. Delevied cond tengene (11) and cond angles () for complex 1			
Ba(1)—O(2)	2.70(1)	Ba(1)—O(3)	2.71(1)
Ba(1)—O(5)	2.69(1)	Ba(1)—O(6)	2.70(1)
Ba(1)O(7)	2.99(1)	Ba(1)—O(8)	2.77(1)
Ba(1)— $O(10)$	2.94(2)	Ba(1)—O(11)	2.895(9)
Ba(1)—O(14A)*	2.90(2)	Ba(1)—O(14B)*	2.66(4)
Ba(2)— $O(1)$	2.98(1)	Ba(2)— $O(2)$	2.83(1)
Ba(2) - O(1) Ba(2) - O(4)	2.97(1)	Ba(2)— $O(5)$	2.83(1)
Ba(2) - O(8)	2.72(1)	Ba(2)—O(9)	2.68(1)
Ba(2)—O(11)	2.68(1)	Ba(2)— $O(12)$	2.80(1)
	2.83(3)	Ba(2)—O(12)*	2.7(1)
Ba(2)—O(13A)*	2.63(3)	Da(2)O(13B)	2.7(1)
O(2)— $Ba(1)$ — $O(3)$	63.3(3)	O(2)—Ba(1)—O(5)	92.9(3)
	, ,	O(2)— $Ba(1)$ — $O(7)$	102.6(3)
O(2)—Ba(1)— $O(6)$	155.9(3)		
O(2)—Ba(1)— $O(8)$	59.8(3)	O(2)—Ba(1)— $O(10)$	86.6(4)
O(2)—Ba(1)— $O(11)$	60.1(3)	O(2)— $Ba(1)$ — $O(14A)$	• •
O(2)—Ba(1)— $O(14B)$		O(3)— $Ba(1)$ — $O(5)$	155.1(3)
O(3)— $Ba(1)$ — $O(6)$	140.7(3)	O(3)— $Ba(1)$ — $O(7)$	87.4(3)
O(3)— $Ba(1)$ — $O(8)$	98.4(3)	O(3)— $Ba(1)$ — $O(10)$	85.1(4)
O(3)— $Ba(1)$ — $O(11)$	109.0(3)	O(3)— $Ba(1)$ — $O(14A)$	
O(3)— $Ba(1)$ — $O(14B)$		O(5)— $Ba(1)$ — $O(6)$	63.4(3)
O(5)—Ba(1)— $O(7)$	91.0(3)	O(5)— $Ba(1)$ — $O(8)$	60.8(3)
O(5)—Ba(1)— $O(10)$	101.7(4)	O(5)— $Ba(1)$ — $O(11)$	60.1(3)
O(5)— $Ba(1)$ — $O(14A)$		O(5)—Ba(1)— $O(14B)$	126.0(9)
O(6)—Ba(1)— $O(7)$	83.5(3)	O(6)— $Ba(1)$ — $O(8)$	107.7(3)
O(6)— $Ba(1)$ — $O(10)$	93.4(4)	O(6)— $Ba(1)$ — $O(11)$	101.1(3)
O(6)— $Ba(1)$ — $O(14A)$	83.2(5)	O(6)— $Ba(1)$ — $O(14B)$	63.4(9)
O(7)—Ba(1)— $O(8)$	56.4(3)	O(7)—Ba(1)— $O(10)$	164.0(4)
O(7)— $Ba(1)$ — $O(11)$	142.8(3)	O(7)—Ba(1)— $O(14A)$	77.5(5)
O(7)— $Ba(1)$ — $O(14B)$	74.5(9)	O(8)— $Ba(1)$ — $O(10)$	138.8(4)
O(8)— $Ba(1)$ — $O(11)$	87.6(3)	O(8)—Ba(1)— $O(14A)$	129.8(5)
O(8)— $Ba(1)$ — $O(14B)$	130.9(9)	O(10)— $Ba(1)$ — $O(11)$	53.2(4)
O(10)—Ba(1)— $O(14A$	A) 86.6(6)	O(10)— $Ba(1)$ — $O(14B)$	90.1(9)
O(11)—Ba(1)—O(14A	A) 139.6(5)	O(11)— $Ba(1)$ — $O(14B)$) 140.6(9)
O(1)— $Ba(2)$ — $O(2)$	54.3(3)	O(1)—Ba(2)— $O(4)$	164.8(4)
O(1)—Ba(2)— $O(5)$	140.9(3)	O(1)—Ba(2)— $O(8)$	90.5(4)
O(1)—Ba(2)—O(9)	87.4(4)	O(1)—Ba(2)— $O(11)$	100.0(3)
O(1)— $Ba(2)$ — $O(12)$	91.3(3)	O(1)—Ba(2)— $O(13A)$	71.0(7)
O(1)— $Ba(2)$ — $O(13B)$	100(2)	O(2)— $Ba(2)$ — $O(4)$	140.0(3)
O(2)— $Ba(2)$ — $O(5)$	87.3(3)	O(2)— $Ba(2)$ — $O(8)$	58.8(3)
O(2)— $Ba(2)$ — $O(9)$	106.0(3)	O(2)— $Ba(2)$ — $O(11)$	61.2(3)
O(2)— $Ba(2)$ — $O(12)$	103.1(3)	O(2)— $Ba(2)$ — $O(13A)$	123.9(7)
O(2)— $Ba(2)$ — $O(13B)$		O(4)— $Ba(2)$ — $O(5)$	54.2(3)
O(4)— $Ba(2)$ — $O(8)$	102.3(3)	O(4)— $Ba(2)$ — $O(9)$	91.4(4)
O(4)— $Ba(2)$ — $O(11)$	87.6(3)	O(4)— $Ba(2)$ — $O(12)$	80.6(3)
O(4)— $Ba(2)$ — $O(13A)$		O(4)— $Ba(2)$ — $O(13B)$	66(2)
O(5)— $Ba(2)$ — $O(8)$	59.6(3)	O(5)—Ba(2)— $O(9)$	98.0(3)
O(5)— $Ba(2)$ — $O(11)$	61.0(3)	O(5)— $Ba(2)$ — $O(12)$	106.0(3)
O(5)—Ba(2)— $O(13A)$		O(5)— $Ba(2)$ — $O(13B)$	• •
O(8)—Ba(2)— $O(9)$	62.0(4)	O(8)—Ba(2)— $O(11)$	93.2(3)
O(8)— $Ba(2)$ — $O(12)$	155.2(3)	O(8)—Ba(2)— $O(13A)$, ,
O(8)—Ba(2)— $O(12)O(8)$ —Ba(2)— $O(13B)$, ,	O(9)— $Ba(2)$ — $O(13A)$	154.3(3)
O(9)—Ba(2)— $O(13b)O(9)$ —Ba(2)— $O(12)$	142.8(3)	O(9)— $Ba(2)$ — $O(13A)$	
O(9)—Ba(2)— $O(12)O(9)$ —Ba(2)— $O(13B)$	• •	O(9)— $Ba(2)$ — $O(13A)O(11)$ — $Ba(2)$ — $O(12)$	62.2(3)
O(9)—Ba(2)— $O(13B)O(11)$ —Ba(2)— $O(13A)$	• • •	O(11)—Ba(2)— $O(12)O(11)$ —Ba(2)— $O(13B)$	
O(11)—Ba(2)— $O(13A)$		O(12)—Ba(2)— $O(13B)$	

^{*} Site occupied O(13A), 0.67(2); O(13B), 0.14(4); O(14A), 0.58(2); O(14B), 0.42(2).

2530 S. Ivanov et al.

Ba(2)] and the other Ba atom by the β -diketonate and the methoxy group oxygens [O(7), O(8), O(10) and O(11) to Ba(1); O(1), O(2), O(4) and O(5) to Ba(2)].

Each barium atom is included in two six-membered and two five-membered chelate rings. In the six-membered rings, the Ba—O distances range from 2.68 to 2.80 Å (Table 1, Fig. 1), whereas in the five-membered rings, the Ba—O distances lie between 2.77 and 2.99 Å. Note that the former distances are shorter than the latter distances. In the related compounds, Ba₄(thd)₈ [3], Ba₅(thd)₉Cl(H₂O)₇ [4], and Ba₆(thd)₁₂(H₂O)₁₃ [5], the Ba—O distances are 2.47–3.04, 2.57–3.11 and 2.54–2.95 Å, respectively. Additionally, the Ba atoms are coordinated to disordered water molecules. One of the water molecules [O(13)] has a total occupancy factor of 0.81(3). Thus, the coordination numbers of the atoms Ba(1) and Ba(2) are nine, owing to eight

oxygen atoms of four L^- ligands and a water molecule. The local symmetry of the complex is close to $\overline{4}$.

The Ba \cdots Ba distance in the dimer 1 [3.901(1) Å] is shorter than those reported in references [3-5] (4.186-4.194, 4.382-5.457, 4.195-5.170 Å, respectively).

REFERENCES

- 1. Sheldrick, G. M., Acta Cryst., 1990, A46, 467.
- Sheldrick, G. M., SHELXL93, University of Göttingen, Germany, 1993.
- Drozdov, A. A. and Trojanov, S. I., *Polyhedron*, 1992, 11, 2877.
- Pisarevsky, A. P. and Struchkov, Yu. T., Polyhedron, 1994, 13, 1445.
- Pisarevsky, A. P. and Struchkov, Yu. T., Polyhedron, 1994, 13, 2459.